SITES:

 

Carbohydrate-Active Enzymes Server. http://afmb.cnrs-mrs.fr/CAZY/

Phylogenetic Classification of Proteins Encoded in Complete Genomes (Clusters of Orthologous Groups of Proteins - COGs) http://www.ncbi.nlm.nih.gov/COG/

Structural Classification of Proteins http://scop.mrc-lmb.cam.ac.uk/scop/

ExPASy Molecular Biology Server http://www.expasy.ch/

 

Fourth International Fructan Symposium �Fructan 2000�. August 16‑20, 2000. Arolla. Switzerland.http://didimi.cyberlink.ch/fructan/public/abstractsdb/

Ninth Seminar on Inulin, April 18-19, 2002. Budapest, Hungary http://www.mete.mtesz.hu/inulin/

XXIst International Carbohydrate Symposium, 7-12 July, 2002. Cairns, Australia http://www.ics2002.uwa.edu.au/

Third International Symposium on Glycosyltransferases September 19-22, 2002. Djur�n�set, Stockholm, Sweden http://www.mig.lu.se/GlycoT2002/

 

 

REFERENCES

 

Ashida, H., Tamaki, H., Fujimoto, T., Yamamoto, K., and Kumagai, H. Molecular cloning of cDNA encoding α‑N-acetylgalactosaminidase from Acremonium sp. and its expression in yeast. Arch. Biochem. Biophys. 2000. V. 384. P. 305-310.

Chaillou, S., Lokman, B.C., Leer, R.J., Posthuma, C., Postma, P.W., and Pouwels PH Cloning, sequence analysis, and characterization of the genes involved in isoprimeverose metabolism in Lactobacillus pentosus. J. Bacteriol. 1998. V. 180. P. 2312-2320.

Coutinho P.M., Henrissat B. Carbohydrate-active enzymes: an integrated database approach. In: Recent advances in carbohydrate bioengineering. Eds. Gilbert H.J., Davies G., Henrissat B., Svensson B. Cambridge, UK: The Royal Society of Chemistry, 1999. P. 3-12.

Coutinho P.M., Henrissat B. The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. In: Genetics, biochemistry and ecology of cellulose degradation. Eds. Ohmiya K., Hayashi K., Sakka K., Kobayashi Y., Karita S., Kimura T. Tokyo: Uni. Publishers Co., 1999. P. 15-23.

Dagnall B.H., Paulsen I.T., Saier Jr.M.H. The DAG family of glycosyl hydrolases combines two previously identified protein families. Biochem. J. 1995. V. 311. P. 349-350.

Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995. V. 3. P. 853-859.

Enzyme Nomenclature. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. San Diego: Acad. Press, 1992. 862 p.

Gilkes N.R., Henrissat B., Kilburn D.G., Miller Jr.R.C., Warren R.A.J. Domains in microbial b-1,4-glycanases: sequence conservation, function, and enzyme families. 1991. Microbiol. Rev. 1991. V. 55. P. 303-315.

Hart, D.O., He, S., Chany, C.J., Withers, S.G., Sims, P.F., Sinnott, M.L., Brumer, H. Identification of Asp-130 as the catalytic nucleophile in the main α‑galactosidase from Phanerochaete chrysosporium, a family 27 glycosyl hydrolase. Biochemistry. 2000. V. 39. P. 9826-9836.

Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991. V. 280. P. 309-316.

Henrissat B. Glycosidase families. Biochem. Soc. Trans. 1998. V. 26. P. 153‑156.

Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1993. V. 293. P. 781-788.

Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 1996. V. 316. P. 695-696.

Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 1997. V. 7. P. 637-644.

Henrissat B., Romeu A. Families, superfamilies and subfamilies of glycosyl hydrolases. Biochem. J. 1995. V. 311. P. 350-351.

Holm L., Sander Ch. Structural similarity of plant chitinase and lysozymes from animals and phage. An evolutionary connection. FEBS Lett. 1994. V. 340. P. 129‑132.

Janeček, Š. Sequence of archaeal Methanococcus jannaschii α-amylase contains features of familias 13 and 57 of glycosyl hydrolases: a trace of their common ancestor? Folia Microbiol. 1998. V. 42. P. 123-128.

Jenkins J., Leggio L.L., Harris G., Pickersgill R. β-Glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold β/α architecture and with two conserved glutamates near the carboxy-terminal ends of β-strands four and seven. FEBS Lett. 1995. V. 362. P. 281-285.

Liebl, W., Wagner, B., and Schellhase, J. Properties of an α‑galactosidase, and structure of its gene galA, within an α- and β-galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritima. System. Appl. Microbiol. 1998. V. 21. P. 1‑11.

MacGregor, E.A., Jespersen, H.M., and Svensson, B. A circularly permuted α‑amylase-type α/β-barrel structure in glucan-synthesizing glucosyltransferases. FEBS Lett. 1996 V. 378. P. 263‑266.

MacGregor, E.A., Janeček, Š., and Svensson, B. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta / Protein Structure and Molecular Enzymology. 2001. V. 1546. P. 1-20.

Margolles-Clark, E., Tenkanen, M., Luonteri, E., and Penttil�, M. Three α‑galactosidase genes of Trichoderma reesei cloned by expression in yeast. Eur. J. Biochem. 1996. V. 240. P. 104-111.

Mian I.S. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families. Blood Cells Mol. Dis. 1998. V. 24. P. 83-100.

Monzingo A.F., Marcotte E.M., Hart P.J., Robertus J.D. Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nat. Struct. Biol. 1996. V. 3. P. 133-140.

Naumoff D.G. Conserved sequence motifs in levansucrases and bifunctional b‑xylosidases and a-L-arabinases. FEBS Lett. 1999. V. 448. P. 177-179.

Naumoff D.G. b-Fructosidase superfamily: homology with some a-L-arabinases and b‑D-xylosidases. Proteins Struct. Funct. Genet. 2001. V. 42. P. 66‑76.

Naumoff D.G. Homologous locus of Bacillus subtilis and Bacillus stearothermophilus genomes containing levansucrase and levanase genes. Molecular Biology (Engl Transl). 1999. V.33. P.173‑176.

Naumoff D.G. Levanase gene sequence from strain Bacillus sp. L7 (letter to the editor). FEMS Microbiol. Lett. 1998. V. 164. P. 227-228.

Naumoff, D.G. Sequence analysis of glycosylhydrolases: b-fructosidase and a‑galactosidase superfamilies. Glycoconjugate J. 2001. V. 18. P. 109.

Naumoff D.G., Doroshenko V.G. b-Fructosidases: a new superfamily of glycosyl hydrolases // Molecular Biology (Engl Transl). 1998. V.32. P.761�766.

Naumoff D.G., Livshits V.A. Molecular structure of the Lactobacillus plantarum sucrose utilization locus: comparison with Pediococcus pentosaceus // Molecular Biology (Engl Transl). 2001. V.35. P.15-22.

Pickersgill R., Harris G., Leggio L.L., Mayans O., Jenkins J. Superfamilies: the 4/7 superfamily of ba-barrel glycosidases and the right-handed parallel b-helix superfamily. Biochem. Soc. Trans. 1998. V. 26. P. 190-198.

Pons T, Hernandez L, Batista FR, Chinea G. Prediction of a common b-propeller catalytic domain for fructosyltransferases of different origin and substrate specificity. Protein Sci. 2000. V. 9. P. 2285-2291.

Pons T., Olmea O., Chinea G., Beldarra�n A., M�rquez G., Acosta N., Rodr�guez L., Valencia A. Structural model for family 32 of glycosyl-hydrolase enzymes. Proteins Struct. Funct. Genet. 1998. V. 33. P. 383-395.