International Summer School

   From Genome to Life:

    Structural, Functional and Evolutionary approaches

 


SCHLITT Thomas

EBI, Microarray Informatics, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK

title: Construction and analysis of genome-wide gene disruption networks

Microarray experiments comparing expression levels of all genes in yeast for hundreds of mutants allow us to examine properties of gene regulatory networks on a genomic scale. We can investigate questions such as network modularity, connectivity, and look for genes with particular roles in the network structure. We have built genome-wide disruption networks for yeast, using a representation of gene expression data as directed labelled graphs. Nodes represent genes and arcs connect nodes if the disruption of the source gene significantly alters the expression of the target gene. The resulting disruption networks show a significant overlap with analogous networks constructed from scientific literature. In disruption networks the number of arcs adjacent to different nodes are distributed roughly according to a power-law, like in many complex systems where the robustness against perturbations is important. Genes with the highest outdegrees often encode proteins with regulatory functions, whereas genes with the highest indegrees are predominantly involved in metabolism. The local structure of the networks is meaningful, genes involved in the same cellular processes are close together in the network.